
Automating Component Test Insertion into DØRunII
CTBUILD Software Packages

Mariano A. Zimmler
New York University

Supervisor
Dr. David J. Ritchie
Computing Division

Fermi National Accelerator Laboratory
Summer Internships in Science and Technology

Summer 2002

DØ Code Releases

DØ makes weekly test releases of all its software packages to IRIX and Linux.

Test releases are used by developers to introduce new functionality.

Every three months, a production release is started based on a test release. Its
purpose is to fix bugs and introduce minor changes.

In the past, the web-page containing the status of these releases had had to be
maintained manually but this turned out to be too time consuming.

CTEST/CTBUILD

CTEST is DØ’s standard code management environment. It defines a
convention for the physical organization of both the code and the instructions

for building C++ software. CTBUILD is its implementation.

The fundamental unit of software is the component. Components are grouped into
packages and packages into subsystems.

Each component consist of a header file, an implementation file and a test file. The
implementation file contains the source, which is compiled into a bare object or a
library. The test file is a main program which tests the header interface and
implementation source and returns zero if the test is successful.

Build actions are controlled by a set of “instruction files” located in a package’s top
directory or subdirectories.

Each of the subdirectories listed in the instruction file SUBDIRS is processed after
carrying out the action in the current directory.

Dependencies and Testing

Each package builds at most one library.

The library will generally depend on other libraries which are used by the objects
contained in the package library. These libraries are listed in LIBDEPS.

The list of components that are to make up the package library is taken from the
instruction files COMPONENTS.

Two types of testing are supported by CTEST:

Component tests, which apply to all library source files (components): a test file
defining a main program must be provided for each component.

Integrated tests, which are stand alone tests not restricted to dependence on lower
level objects.

Both kinds of tests are invoked by a script.

The project

My summer project involved doing an analysis of each of the 585 DØRunII software
packages on the following aspects:

Determine which ones are CTBUILD and which ones are SRT (SoftRelTools).

For each CTBUILD package evaluate every component test to determine whether it is
0th order: a main program that returns zero and does not even include its own header file,

1st order: a 0th order test which includes its own header file,

2nd order: a 1st order test which has a constructor for each class.

Write a 1st order component test.

Write a 2nd order component test if time permits.

It was estimated that 50% of the packages had some form of 0th order test in them.

First approach to test insertion

The first subsystem to be analyzed was Muon. This subsystem had 196 component tests
in 23 packages. Of these, 127 were 0th order tests, many of the form

main{return 0}

A gmake alltest revealed errors in two packages due to an incomplete LIBDEPS
file. These errors were fixed and all the changes were checked back into the CVS
repository.

Vertexing Subsystem was then analyzed. Of the 176 component tests in 27 packages, 55
were also found to be empty. Compiling the code revealed a broken header file that was
referencing an undefined class.

The project was producing good results. However, two weeks were needed to process
just these two subsystems with this approach by hand. To complete the remaining 24
subsystems of the DØRunII program suite would have required almost a half a
year! It was necessary to automate the process.

A new approach to test insertion

I proposed my supervisor automating component test insertion by writing a Python
script to do it.

The main difficulty for its implementation was posed by the lack of
standardization in the structure of the packages.

After having examined several other subsystems, the following observations were made:
The COMPONENTS file was found mainly in three different places:

A directory called src
The top-level package directory
Other subdirectories named in arbitrary ways.

The component tests were found to be in most cases together with the COMPONENTS file.
There were also cases where they were placed in a separate directory, typically called test.
Header files were found to be mainly in two locations:

In a directory with the same name as the package
Together with the COMPONENTS file.

The script

Three different versions of the script were implemented to account for all of these
options.

This implementation still required a preliminary analysis of each package structure and
the corresponding code changes that applied.

Eventually, enough experience was acquired to implement a single script that would merge
the other three versions and which would require no preliminary analysis.

The script was implemented in a procedural way. Its skeleton is shown:

def getSubdirs(package directory)
def getComponents(componentsDirectory)
def analyzeComponentTests(componentsList, subdir, package, packageDirectory)
def generateFirstOrderTest(testFilesDirectory, component, includeString)
def main()

Summary of the results of adding component tests into
every DØRunII CTBUILD package

Subsystems processed: 23
Packages processed: 495
Component tests processed: 3301
Added tests: 1559
Errors found and fixed due to the inclusion of these tests: 44

Conclusions

The project was extremely successful. The technique developed for solving this problem
proved that it is possible to process certain aspects of the release in an automatic way.
Other immediate applications of this technique have already been proposed.

This technique also proved that the features of CTEST can be fully exploited for
accomplishing tasks unrelated to its original purpose.

The estimate that 50% of the components in DØRunII did not have proper component tests
proved to be correct: 47.2% of the component tests did not test anything.

Automating DØ Code Releases Status Generation

Mariano A. Zimmler
New York University

Supervisor
Dr. David J. Ritchie
Computing Division

Fermi National Accelerator Laboratory
Summer Internships in Science and Technology

Summer 2002

Code Releases Status

this page would display the number of broken packages for each the
release builds specified in the Build Status Page.Error Status

a third page would display the status of the compression of the release
into tar files in the same six categories specified in the previous page.Freeze Status

this page would display the current build number in each of the three
build machines (d0mino.fnal.gov, d0lxbld4.fnal.gov and
d0lomite.fnal.gov) and each of the two possible compilation setups
(debug or maxopt).

Build Status

this page would display a list of all the releases, stating whether or not
they were on disk, and the date and time of the last change made to the
inventory file of the release.

Overview

The Script

class Tools:
def exists(self, objective, path, input)

class Command:
def __init__(self, commandName)
def execute(self)

class Build:
def __init__(self, hostName, version, release)
def getCurrentBuildNumber(self, buildDir, buildList)
def getBrokenPackages(self, buildDir, buildList)
def getBuildData(self, resultsDir, results)

class Release:
def __init__(self, releaseName)
def getDateLastModified(self)
def getBuildStatus(self)
def getFreezeStatus(self)
def generateAnnotationsFile(self)

class Database:
def __init(self, databaseName)
def retrieveReleaseNames(self)
def retrieveRelease(self)
def update(self, listOfReleases)

class StatusPages:
def __init__(self)
.
.
def getReleaseStatus(self)
def generate(self)

Script main features

The script has an object oriented design in its entirety.

In this case, the object oriented approach was adopted due to the nature of the problem.
This allows for other scripts to reuse code from it by just importing it.

It uses an existing module called HTMLgen to generate formatted HTML web-pages.

It contains a mechanism for generating a persistent database of older releases using
Python’s shelve module.

It contains a system for interacting with the hosting UNIX operating system using the
command popen.

It implements a method for sending commands across a network by means of the UNIX
command rsh.

It implements the notion of a “Trojan Horse” script.

Acknowledgements

I would like to thank Alan Jonckheere, Paul Russo and David Ritchie for their help
and support. They were key to making these projects a success.

	Automating Component Test Insertion into DØRunII CTBUILD Software Packages
	DØ Code Releases
	CTEST/CTBUILD
	Dependencies and Testing
	The project
	First approach to test insertion
	A new approach to test insertion
	The script
	Summary of the results of adding component tests into every DØRunII CTBUILD package
	Conclusions
	Automating DØ Code Releases Status Generation
	Code Releases Status
	Script main features
	Acknowledgements

